Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 349: 123920, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582187

RESUMO

This research endeavors to elevate indoor air quality within aging school environments by concentrating on refining interior finishing materials and windows. Renovations, encompassing window and floor remodeling in classrooms, aim to mitigate particulate matter (PM) infiltration and enhance air exchange rates. Utilizing SPS30 sensors for the analysis of 0.3-2.5 µm particles, with a focus on their implications for human health, the study evaluated air exchange rates, deposition rates, infiltration rates, and particle generation during classroom activities. Post-renovation results demonstrated a noteworthy decrease in air exchange rates, indicating an enhancement in airtightness. The investigation delves into particle generation with various flooring materials, accentuating the importance of opting for durable and low-particle-generating alternatives. Health risk assessments, considering multiple exposure routes (inhalation, dermal contact, and ingestion), revealed reduced risks post-renovation, particularly for children. To further optimize indoor air quality, the study suggests the implementation of air purification systems. Examination of PM generation during student activities showcased a substantial reduction post-renovation. This study underscores the positive influence of architectural enhancements on indoor air quality while acknowledging the necessity for holistic solutions and continuous research.

2.
Biochim Biophys Acta Gene Regul Mech ; 1867(2): 195021, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38417480

RESUMO

The lysine 4 of histone H3 (H3K4) can be methylated or acetylated into four states: H3K4me1, H3K4me2, H3K4me3, or H3K4ac. Unlike H3K4 methylation, the genome-wide distribution and functional roles of H3K4ac remain unclear. To understand the relationship of acetylation with methylation at H3K4 and to explore the roles of H3K4ac in the context of chromatin, we analyzed H3K4ac across the human genome and compared it with H3K4 methylation in K562 cells. H3K4ac was positively correlated with H3K4me1/2/3 in reciprocal analysis. A decrease in H3K4ac through the mutation of the histone acetyltransferase p300 reduced H3K4me1 and H3K4me3 at the H3K4ac peaks. H3K4ac was also impaired by H3K4me depletion in the histone methyltransferase MLL3/4-mutated cells. H3K4ac peaks were enriched at enhancers in addition to the transcription start sites (TSSs) of genes. H3K4ac of TSSs and enhancers was positively correlated with mRNA and eRNA transcription. A decrease in H3K4ac reduced H3K4me3 and H3K4me1 in TSSs and enhancers, respectively, and inhibited the eviction of histone H3 from them. The mRNA transcription of highly transcribed genes was affected by the reduced H3K4ac. Interestingly, H3K4ac played a redundant role with regard to H3K27ac in eRNA transcription. These results indicate that H3K4ac serves as a marker of both active TSSs and enhancers and plays a role in histone eviction and RNA transcription by leading to H3K4me1/3.

3.
Nucleic Acids Res ; 52(1): 259-273, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-37994723

RESUMO

R-loops are three-stranded nucleic acid structures that can cause replication stress by blocking replication fork progression. However, the detailed mechanism underlying the collision of DNA replication forks and R-loops remains elusive. To investigate how R-loops induce replication stress, we use single-molecule fluorescence imaging to directly visualize the collision of replicating Phi29 DNA polymerase (Phi29 DNAp), the simplest replication system, and R-loops. We demonstrate that a single R-loop can block replication, and the blockage is more pronounced when an RNA-DNA hybrid is on the non-template strand. We show that this asymmetry results from secondary structure formation on the non-template strand, which impedes the progression of Phi29 DNAp. We also show that G-quadruplex formation on the displaced single-stranded DNA in an R-loop enhances the replication stalling. Moreover, we observe the collision between Phi29 DNAp and RNA transcripts synthesized by T7 RNA polymerase (T7 RNAp). RNA transcripts cause more stalling because of the presence of T7 RNAp. Our work provides insights into how R-loops impede DNA replication at single-molecule resolution.


Assuntos
Replicação do DNA , Estruturas R-Loop , Imagem Individual de Molécula , RNA/química , DNA Polimerase Dirigida por DNA/metabolismo
4.
Ecotoxicol Environ Saf ; 269: 115817, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38103470

RESUMO

Siloxanes, widely used in various consumer and industrial products, are emerging concerns of contaminants. Despite this, limited studies have been conducted on contamination and time trends on siloxanes in coastal environments. In the present study, four cyclic and 15 linear siloxanes were measured in sediments collected from an artificial saltwater lake in Korea during 2001-2016 to investigate contamination, time trends, and ecotoxicological concerns. Cyclic siloxanes were detected in all sediment samples, whereas linear siloxanes were not frequently detected. The highest siloxane concentrations were observed in creeks passing through various industrial complexes, indicating that industrial activities predominantly contributed to siloxane contamination in coastal environments. Decamethylcyclopentasiloxane (D5) and dodecylcyclohexasiloxane (D6) were predominant siloxanes in sediments over the last two decades. Siloxane concentrations significantly increased in creek sediments from 2008 to 2016, whereas those in inshore and offshore regions significantly decreased due to a strong dilution effect by the operation of tidal power plant. This suggests that consumption patterns and coastal development activities are crucial factors determining the contamination and time trends in the sedimentary siloxanes. The sedimentary concentrations of octamethylcyclotetrasiloxane (D4) and D5 exceeded several thresholds, raising the potentials for ecological risks to aquatic organisms.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Lagos , Siloxanas/análise , Indústrias , República da Coreia , Poluentes Químicos da Água/análise
5.
Small Methods ; : e2300948, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009733

RESUMO

The perovskite solar cell (PSC), which has achieved efficiencies of more than 26%, is expected to be a promising technology that can alternate silicon-based solar cells. However, the performance of PSCs is still limited due to defects and ion migration that occur at the large number of grain boundaries present in perovskite thin films. In this study, the mixed ammonium ligands passivation strategy (MAPS) is demonstrated, which combines n-octylammonium iodide (OAI) and 1,3-diaminopropane (DAP) can effectively suppress the grain boundary defects and ion migration through grain boundaries by the synergistic effect of OAI and DAP, resulting in improved efficiency and stability of PSCs. It has also been revealed that MAPS not only enhances crystallinity and reduces grain boundaries but also improves charge transport while suppressing charge recombination. The MAPS-based opaque PSC shows the best power conversion efficiency (PCE) of 21.29% with improved open-circuit voltage (VOC ) and fill factor (FF), and retained 84% of its initial PCE after 1900 h at 65 °C in N2 atmosphere. Amazingly, the MAPS-based semi-transparent PSC (STP-PSC) retained 94% of their maximum power (21.00% at around 10% AVT) after 1000 h under 1 sun illumination and MAPS-based perovskite submodule (PSM) achieved a PCE of 19.59%, which is among the highest values reported recently.

6.
Small ; : e2305418, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37967349

RESUMO

High-value-added biomass materials like biocarbon are being actively pursued integrating them with soft materials in a broad range of advanced renewable energy technologies owing to their advantages, such as lightweight, relatively low-cost, diverse structural engineering applications, and high energy storage potential. Consequently, the hybrid integration of soft and biomass-derived materials shall store energy to mitigate intermittency issues, primarily through enthalpy storage during phase change. This paper introduces the recent advances in the development of natural biomaterial-derived carbon materials in soft material assembly and its applications in multidirectional renewable energy storage. Various emerging biocarbon materials (biochar, carbon fiber, graphene, nanoporous carbon nanosheets (2D), and carbon aerogel) with intrinsic structures and engineered designs for enhanced enthalpy storage and multimodal applications are discussed. The fundamental design approaches, working mechanisms, and feature applications, such as including thermal management and electromagnetic interference shielding, sensors, flexible electronics and transparent nanopaper, and environmental applications of biocarbon-based soft material composites are highlighted. Furthermore, the challenges and potential opportunities of biocarbon-based composites are identified, and prospects in biomaterial-based soft materials composites are presented.

7.
Membranes (Basel) ; 13(6)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367799

RESUMO

Acetaldehyde (CH3CHO) in the atmosphere is associated with adverse health effects. Among the various options for use in removing CH3CHO, adsorption is often employed because of its convenient application and economical processes, particularly when using activated carbon. In previous studies, the surface of activated carbon has been modified with amines to remove CH3CHO from the atmosphere via adsorption. However, these materials are toxic and can have harmful effects on humans when the modified activated carbon is used in air-purifier filters. Therefore, in this study, a customized bead-type activated carbon (BAC) with surface modification options via amination was evaluated for removing CH3CHO. Various amounts of non-toxic piperazine or piperazine/nitric acid were used in amination. Chemical and physical analyses of the surface-modified BAC samples were performed using Brunauer-Emmett-Teller measurements, elemental analyses, and Fourier transform infrared and X-ray photoelectron spectroscopy. The chemical structures on the surfaces of the modified BACs were analyzed in detail using X-ray absorption spectroscopy. The amine and carboxylic acid groups on the surfaces of the modified BACs are critical in CH3CHO adsorption. Notably, piperazine amination decreased the pore size and volume of the modified BAC, but piperazine/nitric acid impregnation maintained the pore size and volume of the modified BAC. In terms of CH3CHO adsorption, piperazine/nitric acid impregnation resulted in a superior performance, with greater chemical adsorption. The linkages between the amine and carboxylic acid groups may function differently in piperazine amination and piperazine/nitric acid treatment.

8.
Nucleic Acids Res ; 51(15): 7936-7950, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37378431

RESUMO

Replication protein A (RPA), a eukaryotic single-stranded DNA (ssDNA) binding protein, dynamically interacts with ssDNA in different binding modes and plays essential roles in DNA metabolism such as replication, repair, and recombination. RPA accumulation on ssDNA due to replication stress triggers the DNA damage response (DDR) by activating the ataxia telangiectasia and RAD3-related (ATR) kinase, which phosphorylates itself and downstream DDR factors, including RPA. We recently reported that the N-methyl-D-aspartate receptor synaptonuclear signaling and neuronal migration factor (NSMF), a neuronal protein associated with Kallmann syndrome, promotes RPA32 phosphorylation via ATR upon replication stress. However, how NSMF enhances ATR-mediated RPA32 phosphorylation remains elusive. Here, we demonstrate that NSMF colocalizes and physically interacts with RPA at DNA damage sites in vivo and in vitro. Using purified RPA and NSMF in biochemical and single-molecule assays, we find that NSMF selectively displaces RPA in the more weakly bound 8- and 20-nucleotide binding modes from ssDNA, allowing the retention of more stable RPA molecules in the 30-nt binding mode. The 30-nt binding mode of RPA enhances RPA32 phosphorylation by ATR, and phosphorylated RPA becomes stabilized on ssDNA. Our findings provide new mechanistic insight into how NSMF facilitates the role of RPA in the ATR pathway.


Assuntos
Proteínas Serina-Treonina Quinases , Proteína de Replicação A , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinase 1 do Ponto de Checagem/metabolismo , Dano ao DNA , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA/genética , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Replicação A/metabolismo , Humanos
9.
Nucleic Acids Res ; 51(11): 5584-5602, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37140056

RESUMO

DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.


Assuntos
Reparo do DNA , Exodesoxirribonucleases , Proteína 2 Homóloga a MutS , Proteína 3 Homóloga a MutS , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Exodesoxirribonucleases/metabolismo , Recombinação Homóloga , Proteína 2 Homóloga a MutS/metabolismo , Humanos , Linhagem Celular , DNA Helicases/metabolismo , Proteína 3 Homóloga a MutS/metabolismo
10.
Int J Biol Macromol ; 231: 123577, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36758763

RESUMO

Aggressive tumor formation often leads to excessive anaerobic glycolysis and massive production and accumulation of lactate in the tumor microenvironment (TME). To significantly curb lactate accumulation in TME, in this study, lactate oxidase (LOX) was used as a potential therapeutic enzyme and signal regulatory protein α variant (vSIRPα) as a tumor cell targeting ligand. SpyCatcher protein and SpyTag peptide were genetically fused to LOX and vSIRPα, respectively, to form SC-LOX and ST-vSIRPα and tumor-targeting LOX/vSIRPα conjugates were constructed via a SpyCatcher/SpyTag protein ligation system. LOX/vSIRPα conjugates selectively bound to the CD47-overexpressing mouse melanoma B16-F10 cells and effectively consumed lactate produced by the B16-F10 cells, generating adequate amounts of hydrogen peroxide (H2O2), which induces drastic necrotic tumor cell death. Local treatments of B16-F10 tumor-bearing mice with LOX/vSIRPα conjugates significantly suppressed B16-F10 tumor growth in vivo without any severe side effects. Tumor-targeting vSIRPα may allow longer retention of LOX in tumor sites, effectively consuming surrounding lactate in TME and locally generating adequate amounts of cytotoxic H2O2 to suppress tumor growth. The approach restraining the local lactate concentration and H2O2 in TME using LOX and vSIRPα could offer new opportunities for developing enzyme/targeting ligand conjugate-based therapeutic tools for tumor treatment.


Assuntos
Peróxido de Hidrogênio , Neoplasias , Animais , Camundongos , Peróxido de Hidrogênio/metabolismo , Ligantes , Necrose , Ácido Láctico , Microambiente Tumoral
11.
J Nanobiotechnology ; 21(1): 5, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36597089

RESUMO

The aggressive proliferation of tumor cells often requires increased glucose uptake and excessive anaerobic glycolysis, leading to the massive production and secretion of lactate to form a unique tumor microenvironment (TME). Therefore, regulating appropriate lactate levels in the TME would be a promising approach to control tumor cell proliferation and immune suppression. To effectively consume lactate in the TME, lactate oxidase (LOX) and catalase (CAT) were displayed onto Aquifex aeolicus lumazine synthase protein nanoparticles (AaLS) to form either AaLS/LOX or AaLS/LOX/CAT. These complexes successfully consumed lactate produced by CT26 murine colon carcinoma cells under both normoxic and hypoxic conditions. Specifically, AaLS/LOX generated a large amount of H2O2 with complete lactate consumption to induce drastic necrotic cell death regardless of culture condition. However, AaLS/LOX/CAT generated residual H2O2, leading to necrotic cell death only under hypoxic condition similar to the TME. While the local administration of AaLS/LOX to the tumor site resulted in mice death, that of AaLS/LOX/CAT significantly suppressed tumor growth without any severe side effects. AaLS/LOX/CAT effectively consumed lactate to produce adequate amounts of H2O2 which sufficiently suppress tumor growth and adequately modulate the TME, transforming environments that are favorable to tumor suppressive neutrophils but adverse to tumor-supportive tumor-associated macrophages. Collectively, these findings showed that the modular functionalization of protein nanoparticles with multiple metabolic enzymes may offer the opportunity to develop new enzyme complex-based therapeutic tools that can modulate the TME by controlling cancer metabolism.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Ácido Láctico , Catalase , Microambiente Tumoral , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Nanopartículas/uso terapêutico , Linhagem Celular Tumoral
12.
Mar Pollut Bull ; 185(Pt A): 114201, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257246

RESUMO

Contamination of coastal environments by siloxanes is of growing concern. Sediment and bivalves were collected from 50 locations along the Korean coast to assess the geographical distribution, sources, and bioaccumulation potential of siloxanes. Cyclic and linear siloxanes were detectable in all sediment and bivalve samples. The highest siloxane concentrations were detected in sediment (656 ng/g dw) and bivalves (3273 ng/g dw) from highly industrialized bays and harbor-zones, suggesting that industrial and shipping activities are major sources of siloxanes in coastal environment. The geographical distribution of siloxanes was similar in sediment and bivalves. Sedimentary siloxanes were dominated by cyclic siloxanes, while linear siloxanes were predominant in bivalves. Bioaccumulation of linear siloxanes in bivalves originated mainly from the sedimentary environment. Mean biota-sediment accumulation factors (BSAFs) of seven siloxanes ranged from 1.26 to 6.03, indicating potential for bioaccumulation. This is the first report on the nationwide survey on siloxanes in Korean coastal waters.


Assuntos
Bivalves , Poluentes Químicos da Água , Animais , Siloxanas/análise , Bioacumulação , Sedimentos Geológicos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , República da Coreia
13.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293154

RESUMO

Endometrial receptivity is essential for successful pregnancy, and its impairment is a major cause of embryo-implantation failure. MicroRNAs (miRNAs) that regulate epigenetic modifications have been associated with endometrial receptivity. However, the molecular mechanisms whereby miRNAs regulate endometrial receptivity remain unclear. Therefore, we investigated whether miR-182 and its potential targets influence trophoblast cell attachment. miR-182 was expressed at lower levels in the secretory phase than in the proliferative phase of endometrium tissues from fertile donors. However, miR-182 expression was upregulated during the secretory phase in infertile women. Transfecting a synthetic miR-182-5p mimic decreased spheroid attachment of human JAr choriocarcinoma cells and E-cadherin expression (which is important for endometrial receptivity). miR-182-5p also downregulated N-Myc downstream regulated 1 (NDRG1), which was studied further. NDRG1 was upregulated in the secretory phase of the endometrium tissues and induced E-cadherin expression through the nuclear factor-κΒ (NF-κΒ)/zinc finger E-box binding homeobox 1 (ZEB1) signaling pathway. NDRG1-overexpressing or -depleted cells showed altered attachment rates of JAr spheroids. Collectively, our findings indicate that miR-182-5p-mediated NDRG1 downregulation impaired embryo implantation by upregulating the NF-κΒ/ZEB1/E-cadherin pathway. Hence, miR-182-5p is a potential biomarker for negative selection in endometrial receptivity and a therapeutic target for successful embryo implantation.


Assuntos
Infertilidade Feminina , MicroRNAs , Gravidez , Feminino , Humanos , NF-kappa B/metabolismo , Infertilidade Feminina/metabolismo , Endométrio/metabolismo , Caderinas/genética , Caderinas/metabolismo , Implantação do Embrião/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
14.
Front Bioeng Biotechnol ; 10: 973314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36185427

RESUMO

Advances in single-molecule techniques have uncovered numerous biological secrets that cannot be disclosed by traditional methods. Among a variety of single-molecule methods, single-molecule fluorescence imaging techniques enable real-time visualization of biomolecular interactions and have allowed the accumulation of convincing evidence. These techniques have been broadly utilized for studying DNA metabolic events such as replication, transcription, and DNA repair, which are fundamental biological reactions. In particular, DNA repair has received much attention because it maintains genomic integrity and is associated with diverse human diseases. In this review, we introduce representative single-molecule fluorescence imaging techniques and survey how each technique has been employed for investigating the detailed mechanisms underlying DNA repair pathways. In addition, we briefly show how live-cell imaging at the single-molecule level contributes to understanding DNA repair processes inside cells.

15.
Environ Pollut ; 312: 120067, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067974

RESUMO

According to fire accident statistics, fires in buildings are increasing. The flame-retardant performance of insulation materials is considered an important factor for preventing the spread of fire and ensuring evacuation. This study evaluated the flame-retardant performance and combustion characteristics of four types of organic thermal insulation used as core materials in sandwich panels. The flame-retardant performance evaluation based on total heat release and heat release rate revealed that phenolic foam (PF) satisfied the criteria for non-combustible grade insulation. An analysis of the hazardous gases released while combustion of the four insulation materials indicated that a significant amount of CO was released-an average of 19,000 ppm or higher-in the rigid urethan foam (PIR) and spray-type polyurethane foam (SPU). The fractional effective dose (FED) value was derived from the gas analysis results according to ISO 13344. PIR and SPU had an average FED value of 2.0 or higher and were identified as very dangerous in the case of fire accidents. Moreover, the evacuation time in the case of a fire in a warehouse-type building was comprehensively analyzed considering the material, size, and height for the four types of insulation. PIR was the most vulnerable to fire, and for PF, the danger limit was not reached until the end of the simulation.


Assuntos
Incêndios , Retardadores de Chama , Aerossóis , Retardadores de Chama/toxicidade , Gases
16.
Environ Res ; 212(Pt D): 113539, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35623444

RESUMO

Phase-change materials (PCMs) plays a significant role in energy conservation and thermal management systems. However, excessive seepage and insufficient thermal conductivity of pristine PCMs are restricting its real-world applications. Herein, "anisotropic-like" biochar with favorable pore characteristics is designed by combining it with chitosan for dodecane encapsulation. The use of biochar could overcome high manufacturing costs and associated environmental issues of PCM supporting materials. Biochar co-mediated chitosan enrich the mesopore proportion (96.5%) and provide interactive synergistic architecture. The prepared composite PCM exhibited outstanding latent heat retention of 95.9% after repeated cycling, high loading ratio, enhanced thermal conductivity (0.373 W/(m·K)), leakage-free, and repeatable utilization properties above the melting point of pristine dodecane. A figure of merit of 33.94 × 106 W2 S/(m4oC) was achieved, far surpassing that measure among reported biochar-based composite PCMs. This study provides insights into next-generation sustainable energy storage development for a key global sustainability goal.


Assuntos
Quitosana , Alcanos , Carvão Vegetal , Condutividade Térmica
17.
J Vis Exp ; (181)2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35343949

RESUMO

Chromatin is a higher-order structure that packages eukaryotic DNA. Chromatin undergoes dynamic alterations according to the cell cycle phase and in response to environmental stimuli. These changes are essential for genomic integrity, epigenetic regulation, and DNA metabolic reactions such as replication, transcription, and repair. Chromatin assembly is crucial for chromatin dynamics and is catalyzed by histone chaperones. Despite extensive studies, the mechanisms by which histone chaperones enable chromatin assembly remains elusive. Moreover, the global features of nucleosomes organized by histone chaperones are poorly understood. To address these problems, this work describes a unique single-molecule imaging technique named DNA curtain, which facilitates the investigation of the molecular details of nucleosome assembly by histone chaperones. DNA curtain is a hybrid technique that combines lipid fluidity, microfluidics, and total internal reflection fluorescence microscopy (TIRFM) to provide a universal platform for real-time imaging of diverse protein-DNA interactions.Using DNA curtain, the histone chaperone function of Abo1, the Schizosaccharomyces pombe bromodomain-containing AAA+ ATPase, is investigated, and the molecular mechanism underlying histone assembly of Abo1 is revealed. DNA curtain provides a unique approach for studying chromatin dynamics.


Assuntos
Epigênese Genética , Histonas , Cromatina , DNA/genética , Histonas/genética , Histonas/metabolismo , Nucleossomos
18.
Reprod Sci ; 29(11): 3212-3221, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35075615

RESUMO

Decidualization of the endometrial stromal cells (ESCs) is essential for successful embryo implantation. It involves the transformation of fibroblastic cells into epithelial-like cells that secrete cytokines, growth factors, and proteins necessary for implantation. Previous studies have revealed altered expression of miR-375 in the endometrium of patients with recurrent implantation failure and the ectopic stromal cells of patients with endometriosis. However, the exact molecular mechanisms, particularly the role of microRNAs (miRNAs) in the regulation of decidualization, remain elusive. In this study, we investigated whether decidualization is affected by miR-375 and its potential target(s). The findings demonstrated the downregulation of the expression of miR-375 in the secretory phase compared to its expression in the proliferative phase of the endometrium in normal donors. In contrast, it was upregulated in the secretory phase of the endometrium in infertility patients. Furthermore, during decidualization of ESCs in vitro, overexpression of miR-375 significantly reduced the transcript-level expression of forkhead box protein O1 (FOXO1), prolactin (PRL), and insulin-like growth factor binding protein-1 (IGFBP1), the well-known decidual cell markers. Overexpression of miR-375 also resulted in reduced decidualization-derived intracellular and mitochondrial reactive oxygen species (ROS) levels. Using the luciferase assay, we confirmed that NADPH oxidase 4 (NOX4) is a direct target of miR-375. Collectively, the study showed that the miR-375-mediated NOX4 downregulation reduced ROS production and attenuated the decidualization of ESCs. It provides evidence that miR-375 is a negative regulator of decidualization and could serve as a potential target for combating infertility.


Assuntos
Infertilidade , MicroRNAs , Feminino , Humanos , Decídua/metabolismo , NADPH Oxidase 4/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Estromais/metabolismo , Endométrio/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Infertilidade/metabolismo , Células Cultivadas
19.
Environ Pollut ; 294: 118616, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883143

RESUMO

As the demand for coffee has increased, by-product disposal has become a challenge to solve. Many studies are being conducted on how to use coffee waste as building materials to recycle it. In this study, the thermal performance and acoustic performance of a composite developed using bio-based microencapsulated phase change material (MPCM) and coffee waste were evaluated, and the composite was applied as building material. The coffee waste was successfully degreased with ethanol to produce composites, and removal of contaminants and oils was confirmed via scanning electron microscopy. In the phase change process of MPCM, an appropriate amount of thermal energy is absorbed and stored, and the temperature is maintained. MPCM was used in the mixture and the improved thermal performance was evaluated via differential scanning calorimetry analysis, revealing a latent heat of 3.8 J/g for MPCM content of 10%. Further, thermal imaging cameras revealed that an increase in the proportion of MPCM leads to a slower decrease in temperature because of the heat preserved by MPCM over time. In an acoustic performance evaluation, impedance tube test results showed different aspects depending on low, mid, and high-frequency bands. Specifically, at medium frequencies, which correspond to the range of noise generated in cafes, specimens fabricated using MPCM were confirmed to exhibit a higher sound absorption coefficient and an improved acoustic performance. Hence, the composite can be considered an eco-friendly building material with promising thermal and acoustic performance.


Assuntos
Café , Materiais de Construção , Acústica , Reciclagem , Temperatura
20.
Build Environ ; 207: 108540, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34776596

RESUMO

Globally, humanity is at risk from the coronavirus disease (COVID-19). To address the shortage of beds in quarantining those infected with COVID-19, hospitals have prepared temporary beds. However, for temporary hospital beds, it is difficult to maintain a comfortable temperature due to lack of insulation and heat storage. Phase change materials (PCMs) are used to provide temperature stability and control for temporary structure. Therefore, this study aimed to conduct experiments that analyze the effect of room temperature stabilization using a PCM. The method of macro packed PCM (MPPCM) was used to apply the PCM to buildings. The MPPCM installation location was selected and the effect of reducing the box temperature was analyzed, according to the strength of the heat source. As a result, a maximum reduction of 4.9 °C in the box temperature was achieved. Therefore, the application of MPPCM to buildings give to stabilize the box temperature. And the result showed the possibility of providing a comfortable indoor space for temporary hospital beds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...